An Improved Aerosol Optical Depth Retrieval Algorithm for Moderate to High Spatial Resolution Optical Remotely Sensed Imagery
نویسندگان
چکیده
To extract quantitative land information accurately and monitor the air pollution at city scale from moderate to high spatial resolution (MHSR) with a resolution no coarser than 30 m, optical remotely sensed imagery and aerosol parameters, especially aerosol optical depth (AOD), are a necessary step. In this paper, we introduce a new algorithm that can effectively estimate the spatial distribution of atmospheric aerosols and retrieve surface reflectance from moderate to high spatial resolution imagery under general atmosphere and land surface conditions. This algorithm has been improved in the following three aspects: (i) it has been developed for most of the moderate to high spatial resolution remotely sensed imagery; (ii) it can be applied to all kinds of land surface types including bright surface; and (iii) it is completely automatic. This algorithm is therefore suitable for operational applications. The derived AOD in Beijing from Landsat Thematic Mapper (TM), Landsat Enhanced Thematic Mapper Plus (ETM+), and Huan Jing 1 (HJ-1/CCD) data is validated with AErosol Robotic NETwork (AERONET) ground measurements at Beijng and Xianghe stations.
منابع مشابه
Spatio-temporal variability of aerosol characteristics in Iran using remotely sensed datasets
The present study is the first attempt to examine temporal and spatial characteristics of aerosol properties and classify their modes over Iran. The data used in this study include the records of Aerosol Optical Depth (AOD) and Angstrom Exponent (AE) from MODerate Resolution Imaging Spectroradiometer (MODIS) and Aerosol Index (AI) from the Ozone Monitoring Instrument (OMI), obtained from 2005 t...
متن کاملSpatio-temporal variability of aerosol characteristics in Iran using remotely sensed datasets
The present study is the first attempt to examine temporal and spatial characteristics of aerosol properties and classify their modes over Iran. The data used in this study include the records of Aerosol Optical Depth (AOD) and Angstrom Exponent (AE) from MODerate Resolution Imaging Spectroradiometer (MODIS) and Aerosol Index (AI) from the Ozone Monitoring Instrument (OMI), obtained from 2005 t...
متن کاملSpatiotemporal Estimation of PM2.5 Concentration Using Remotely Sensed Data, Machine Learning, and Optimization Algorithms
PM 2.5 (particles <2.5 μm in aerodynamic diameter) can be measured by ground station data in urban areas, but the number of these stations and their geographical coverage is limited. Therefore, these data are not adequate for calculating concentrations of Pm2.5 over a large urban area. This study aims to use Aerosol Optical Depth (AOD) satellite images and meteorological data from 2014 to 2017 ...
متن کاملGlobal aerosol optical properties and application to Moderate Resolution Imaging Spectroradiometer aerosol retrieval over land
[1] As more information about global aerosol properties has become available from remotely sensed retrievals and in situ measurements, it is prudent to evaluate this new information, both on its own and in the context of satellite retrieval algorithms. Using the climatology of almucantur retrievals from global Aerosol Robotic Network (AERONET) Sun photometer sites, we perform cluster analysis t...
متن کاملHigh Resolution Aerosol Optical Depth Retrieval Using Gaofen-1 WFV Camera Data
Aerosol Optical Depth (AOD) is crucial for urban air quality assessment. However, the frequently used moderate-resolution imaging spectroradiometer (MODIS) AOD product at 10 km resolution is too coarse to be applied in a regional-scale study. Gaofen-1 (GF-1) wide-field-of-view (WFV) camera data, with high spatial and temporal resolution, has great potential in estimation of AOD. Due to the lack...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 9 شماره
صفحات -
تاریخ انتشار 2017